
Introduction to
Distributed Computing

(with hands-on Squeak demo for K-12)

Supercomputing 2005

Randy Heiland
Scientific Data Analysis Lab

heiland@indiana.edu

What is Distributed Computing?

u  Wikipedia: “the coordinated use of
physically distributed computers”

 We’re going to assume you know
what a computer is, so we’ll try to
explain what is meant by “physically
distributed” and “coordinated use”.

IUPUI

“physically distributed” computers

Q: What distinguishes two (or more)
coordinated computers being:

u  within a room?
u  within a building?
u  within a State | continent | planet?

Answer: The Network!
u  “coordinated” computers implies some

sort of communication – electronic, optical,
or telepathic J

u  Communication between two computers
separated by an ocean will (probably) take
longer than two computers within a room

u  The underlying application – the
computation – will determine how
important communication needs to be

Communication models

u  Tightly-coupled
w processors need to exchange data frequently

u  Loosely-coupled
w processors exchange data infrequently

u  Uncoupled
w processors work independently

Decomposing a problem
u  How do we decompose (partition, break-

up) a problem so that we can take
advantage of distributed computing?

u  Two basic strategies:
w Data decomposition

- Have each computer perform the same calculation,
but just on its particular chunk of data

w Task decomposition
- Have each computer perform different tasks/

calculations (perhaps on very same data)

Parallel vs. Distributed vs. Grid
 Although an oversimplification, let’s describe

these 3 computing paradigms as follows:
u  Parallel computing – in single machine room;

very fast network; homogeneous computers
u  Distributed computing – “spatially” larger

than Parallel; distributed memory;
heterogeneous computers

u  Grid computing – “spatially” larger than
Dist’d; may involve dist’d parallel computers

 Let’s look at some
“successful” examples of
distributed computing
projects…

3 examples

From the very large – SETI@home
u  Search for Extraterrestrial Intelligence
u  Started 1999

To the very small

For the mathematically-inclined

http://www.mersenne.org/

u  Not to trivialize them, but they have been
successful, in part, because each has a
communication model which is basically
uncoupled, i.e. each processor is able to
independently work on a chunk of data

u  Life isn’t so easy with a tightly-coupled
application

Previous 3 successful examples

HOW do processors communicate?
u  Message-Passing Interface (MPI) –
 de facto standard for computational

science applications.
 Two widely used, open source

implementations:
w MPICH
w LAM/MPI

Communication patterns
Master computer

Workers

data grid

One common pattern is found in applications involving
data decomposition. Here each processor handles its
section of data, communicating with its neighbors, as well
as the “master”. There are many other patterns.

Advanced Topics

u  Distributed Algorithms, Nancy A. Lynch
 MIT OpenCourseWare à Electrical

Engineering and Computer Science

Enough lecture – let’s play!

u  Let’s explore some simulated parallel/
distributed computing concepts (and have
some fun) using a freely available software
package called Squeak.

Targeting K-12: squeakland.org
u  Free/open source
u  “Media authoring” tool
u  Fun, interactive
u  Math & science concepts
 through simulations
u  Alan Kay – “father of the

personal computer”

If you don’t have Squeak installed, you can get
it from squeakland.org

Startup screen:

Click on Navigator tab to open it
 then click on the
 paintbrush icon

Painting/drawing palette
Paint brush, fill bucket,
eye-dropper(color selector), eraser

color selection

shapes

Brush size

Simulated distributed computing

u  Create a ‘computer’
u  Make copies of it
u  Have our ‘distributed computer system’

do something interesting

Create a ‘computer’:

1) Draw a picture of
 your ‘computer’

2) Keep it

3) Rename it: “p0”
(for “processor #0”)

4) Open its Viewer
(click the “eyeball” halo)

“mousing over” a painted object should
reveal a set of “halos”. Otherwise, on Windows, Alt-click the object.
On Linux, Ctl-click. On Macs, Cmd-click.

Object-oriented programming
An object’s Viewer lets us ‘program’ the object.
A Viewer contains categories of draggable ‘tiles’.

Create a variable ‘myid’ for the object ‘p0’

Click on ‘Accept’ when
you’re done

(myid is a variable used in MPI programs that identifies each computer)

Clone p0 to make p1,p2,p3

Clone p0 by making a sibling (hold ‘Shift’ while
pressing the Duplicate halo). Notice the name of
the new sibling is ‘p1’.
Make another sibling of p0 (NOT of p1!) à p2
Make a third sibling of p0 à p3

If you need to move p0-p3, you can ‘Shift’
rubberband them to select the group.

Flash movie: creating p0-p3

When making siblings of p0, be sure to press
‘Shift’ key while selecting the Duplicate halo.

Silly example: ‘dancing’ computers

Create a ‘dance’
script for p0:
 - move forward
 - turn

Flash movie: create a script

Create a script (a program) by dragging/
dropping tiles (i.e. hold/release
mouse button)

Make all computers dance

Create another script, name
it ‘danceall’ and have it
invoke the ‘dance’ script for
p0 and all its siblings.

Sync’d line dancing

Running the ‘danceall’ script
will cause all computers to
dance the same circle dance.

Asynchronous dancing
Replacing the “forward by” fixed value with the variable
‘myid’ will make each computer have a unique dance.

Draw my dance
In the ‘pen use’ category, drag the ‘penDown’ tile into our
script to draw our paths.

Calculating the value of pi (π)
An introductory MPI program is to compute the
value of pi using a Monte-Carlo approach.
Each processor:

- “throws darts” at a square board of unit radius
-  if a dart lands inside the unit circle, increment
 a counter

Since the area of the square board is =4 (2x2)
and the area inside the unit circle is πr2 =π
Then we know that π/4~(#darts in circle)/(total #)
and we can approximate π

-1 1

Each of 4 processors has a different
colored dart – results after a few throws

The pixel size of our dart board is 300x300; we
normalize it to be [-1,1]

Red
Green
Blue
Black

Results after several throws

The calculation of pi is left as an exercise…
(get the Squeak project from http://sda.iu.edu/K-12)

Red
Green
Blue
Black

Thanks!

Thanks!

We gratefully acknowledge the developers of Squeak
and the squeakland.org community of users.

