Squeak- a Free Computer Application to Enhance Math and Science Learning

HASTI 2006

Randy Heiland, Assoc Director Scientific Data Analysis Lab (IUPUI) – sda.iu.edu <u>heiland@indiana.edu</u>

Katie Browning, Math & Science Center Manager Girl Scouts of Hoosier Capital Council

Outline

- (distrib copy of Squeak?)
- Collective "thank you"
- My/Lab's background and interests
- Intro to Squeak with demos
- Interactive with you
- Your thoughts and ideas

Speaker's background

- B.S. Comp Math, Eastern Illinois U.
- M.S. Comp Science, U. of Utah
- M.A. Mathematics, Arizona State U.
- 25 yrs scientific programming
- Scientific data visualization/analysis
- 2 children (ages 9 and 5)
- SDA Lab: improve science understanding

If you need to leave early

http://squeakland.org http://sda.iu.edu/K-12

heiland@iu.edu

Squeak

What is it?
How can you get it?
What can it do?
What can't it do (easily)?

Squeak – what is it?

- 2-D graphics application
- Open source (=free) (for Windows, Mac, Linux)
- Multimedia authoring environment
- Drag & drop programming environment
- Constructivist learning environment

Squeak – how can you get it?

 Download from squeakland.org (installer ~=6M; virus-free)
 a.k.a. Etoys=Educational toys

Optional media (\$) Book,DVD

Squeak – what can it do?

- Let children be artistically creative
- Let children create dynamic "stories"
- Let children create [mathematical] games and artwork
- Teach (object-oriented) programming
- Let children create math & science simulations

Squeak – what can't it do (easily)?

3-D graphics

- Automatic graphing of data (it's not a spreadsheet application)
- Image editing (it's not Photoshop)
- Sharing over the Internet
- Custom sounds/music

Demos...

Getting started
Paint a sketch
Program (script) a sketch
Math/Science simulations

Getting started

pervasivetechnologylabs

Click on the paintbrush

Paint a sketch

Experiment with the paint tools to create a sketch. When you' re done, 'Keep' it.

 \rightarrow Observe your world.

(Or Alt-click while cursor on the sketch)

A sketch' s default orientation is 'up' (green arrow).

You' II directly edit your sketch via the halos.

Paint another sketch: pencil

• Q: how many ants is the same length as a pencil?

→ Counting, estimation

Repaint: "sharpen" the pencil

After repainting/Keep, move its rotation center to the tip (hold **Shift** key to move it) then shrink the pencil.

Program (script) a sketch

A viewer contains tiles (in categories/blocks)

274

379

0

Program a sketch (2)

Drag/drop a tile into the World to create a script.

! 0	pencil script2	🕕 normal 🍹	×
pencil	forward by 💠 5 🕨		

Click on the timer clock to run the script (toggle on/off)

AT INDIANA UNIVERSITY

Simple geometry

o 🛊 pen use			
! 🔛 pencil clear all pen trails			
🔛 pencil's dotSize 🧲 🔷			
drag from here to obtain an assignment phrase.			
pencil's penDown			
🔡 pencil's penSize 🧲 🖕 1			
pencil's trailStyle 🧲 🗣 lines			

Image: pencil geom Image: pencil geom Image: pencil forward by Image: pencil forward by	×
pencil turn by \$5 >	
pencil's penDown 🗲 🍦 true	

Visually seeing effect of direct manipulation of numbers (+/-)

More geometry + algebra

Create a variable 'x' Set x=15 at the start. What happens if you keep 'turn by' fixed but change the 'forward by' (speed) ?

Animations: logic and programming

Physics

Overview

This simulation emulates a box of given mass sliding down an inclined plane. There are three variables which can be controlled by the user; the boxes mass, the coefficient of friction between the box and the incline, and the angle of inclination. The box's mass is in kg, the higher the mass, the greater the acceleration of the box. The coefficient of friction determines how much friction will result of the physical action. This number should be between 0 (no friction) and 1 (complete fricion). The final variable is the angle of inclination, which represents the angle, in degrees, that the incline forms with the surface, and should be between 0 and 90, but preferably somewhere inbetween 30 and 60.

Instructions

Before you begin, set the three variables on the bottom row variables on the top of the screen, which are mass, coeffric, and inclination. Next, press the reset button, and then place the box on the surface. Then run the 'run' script'. At the top of the screen, you can see the various qualities of the box. Refer to the table to determine the coefficient of friction for a specific surface.

From squeakland.org \rightarrow kids play \rightarrow Etoys

Ecology

From squeakland.org \rightarrow kids play \rightarrow Etoys

Medical image analysis

Simply drag/drop images from your computer into Squeak's World

Image segmentation:

pervasive technology labs

Health education

A simulation that shows blood cells flowing through a vein but getting clogged by plaque (in white). The plaque decreases as more fruits and vegetables are consumed.

Misc: 'Supplies' tab

Drag a 'playfield' into the World to provide a fenced in region for sketches.

A source for many basic types of objects

Supplies

pervasivetechnologylabs

Help at squeakland.org

