A subset (first 500) of neuron firings at start of time series (with z-scaled cubic glyphs).
500 firings (and zoom of lower-right region).
5000 firings.
50000 firings.
All (~120000) firings.
>> load InVitroExperiment_133neurons_ASDF >> TEmatrix = ASDFTEdelay(asdf,1); >> size(TEmatrix) ans = 133 133 >> whos TEmatrix Name Size Bytes Class Attributes TEmatrix 133x133 141512 double >> TEmatrix TEmatrix = 1.0e-03 * Columns 1 through 10 0 0.0000 0.0008 0.0046 0.0001 0.0035 0.0532 0.0024 0.0008 0.0053 0.0000 0 0.0015 0.0000 0.0000 0.0019 0.0000 0.0000 0.0027 0.0000 0.0008 0.0015 0 0.0033 0.0001 0.0001 0.0072 0.0000 0.0011 0.0000 0.0027 0.0000 0.0000 0 0.0000 0.0005 0.0234 0.0000 0.0033 0.0000 0.0003 0.0000 0.0001 0.0000 0 0.0000 0.0002 0.0001 0.0005 0.0000 0.0024 0.0007 0.0003 0.0046 0.0000 0 0.0006 0.0001 0.0036 0.0000 0.0458 0.0000 0.0020 0.0132 0.0009 0.0095 0 0.0243 0.0071 0.0123 0.0062 0.0000 0.0012 0.0000 0.0001 0.0001 0.0196 0 0.0012 0.0000 0.0022 0.0000 0.0000 0.0000 0.0001 0.0003 0.0113 0.0012 0 0.0015 0.0053 0.0000 0.0000 0.0071 0.0000 0.0074 0.0125 0.0069 0.0000 0 >> save teMtx TEmatrixThen, from Python:
import scipy from scipy import io te = {} scipy.io.loadmat("full-path-to/teMtx",te) In [2]: teMtx = te['TEmatrix'] In [3]: teMtx.size Out[3]: 17689 In [4]: teMtx.shape Out[4]: (133, 133) In [6]: teMtx[0:9,0:9] Out[6]: array([[ 0.00000000e+00, 1.68033989e-08, 7.59139762e-07, 4.62332534e-06, 1.39243600e-07, 3.50863669e-06, 5.32143167e-05, 2.44901501e-06, 7.68650565e-07], [ 1.73985789e-08, 0.00000000e+00, 1.45115517e-06, 4.93031343e-09, 3.11438363e-08, 1.92049751e-06, 2.16824470e-08, 6.40914027e-09, 2.65017478e-06], [ 7.59736245e-07, 1.45118790e-06, 0.00000000e+00, 3.30347955e-06, 7.32821449e-08, 1.20916632e-07, 7.22468653e-06, 1.50957302e-08, 1.05983595e-06], [ 2.70174543e-06, 4.93023466e-09, 1.16339858e-08, 0.00000000e+00, 4.09147792e-08, 5.44135943e-07, 2.33556551e-05, 8.26447814e-09, 3.32418446e-06], [ 2.56281682e-07, 3.11322475e-08, 7.34055651e-08, 4.09002090e-08, 0.00000000e+00, 3.82542228e-09, 2.11237318e-07, 5.35178533e-08, 5.05555796e-07], [ 2.41442747e-06, 6.50163414e-07, 3.05966530e-07, 4.62225512e-06, 3.72983776e-09, 0.00000000e+00, 5.57714298e-07, 8.77744168e-08, 3.57742867e-06], [ 4.58499154e-05, 1.91341003e-08, 2.02548314e-06, 1.32224727e-05, 9.27983365e-07, 9.52643411e-06, 0.00000000e+00, 2.43260508e-05, 7.10147031e-06], [ 6.24163376e-06, 6.42654021e-09, 1.20168903e-06, 8.31400729e-09, 5.35358119e-08, 8.76587892e-08, 1.95692578e-05, 0.00000000e+00, 1.21180911e-06], [ 2.15953316e-06, 8.75691293e-09, 2.06638852e-08, 1.15044561e-08, 7.26714240e-08, 3.17082577e-07, 1.12806867e-05, 1.20285631e-06, 0.00000000e+00]])Then visualize (note that each matrix below has its color LUT scaled accordingly):
10x10 submatrix: red square = 0.0532 * 1.0e-03 (in the Matlab above)
Python: maxTE = 5.32143167096e-05 at idx,idy = (6,0)
Full 133x133 TE matrix (no spaces between colored square glyphs) and zoomed lower-right region.
Python: maxTE = 0.000224195159452 at idx,idy = (117,124))
ForceDirected (thresh=1000). Zoomed in on the largest (1 of 3) clusters. (Recall maxTE at 117->124)
Circular (thresh=1000).
Circular (thresh=500).